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Abstract Knowledge of the effects of climate factors on

net primary production (NPP) is pivotal to understanding

ecosystem processes in the terrestrial carbon cycle. Our

goal was to evaluate four different categories of effects

(physical, climatic, NDVI, and all effects[global]) as pre-

dictors of forest NPP in eastern China. We developed

regression models with data from 221 NPP in eastern

China and identified the best model with each of the four

categories of effects. Models explained a large part of the

variability in NPP, ranging from 46.8% in global model to

36.5% in NDVI model. In the most supported global

model, winter temperature and sunshine duration nega-

tively affected NPP, while winter precipitation positively

affected NPP. Thus, winter climate conditions play an

important role in modulating forest NPP of eastern China.

Spring temperature had a positive affect on NPP, which

was likely because a favorable warm climate in the early

growing season promotes forest growth. Forest NPP was

also negatively affected by summer and autumn tempera-

tures, possibly because these are related to temperature

induced drought stress. In the NDVI model, forest NPP was

affected by NDVI in spring (positive), summer (negative)

and winter (negative) seasons. Our study provides insight

into seasonal effects of climate and NPP of forest in China,

as well as useful knowledge for the development of

climate-vegetation models.

Keywords Forest ecosystems � Net primary production

(NPP) � Climatic variables � Eastern China

Introduction

Terrestrial net primary production (NPP) is among the

most important ecosystem variables and one of the main

sources for human food resources, wood products, and fuel

(Knapp and Smith 2001; Myneni and others 2001).

Recently, interest in regional patterns in NPP and their

determinants has intensified because the earth experienced

dramatic environmental changes in recent decades (Wal-

ther and others 2002). Besides dynamic ecosystem models

that are capable of quantitatively simulating the NPP-cli-

mate relationships (Fang and others 2001; Schuur 2003;

Del Grosso and others 2008), many recent studies have

emphasized that multiple mechanisms (e.g., nitrogen

deposition, CO2 fertilization, forest regrowth, and climatic

changes) have eased several critical climatic constraints to

plant growth (Lucht and others 2002; Nemani and others

2003), such that NPP will increase globally in the future.

The observed alterations in NPP can influence virtually all

ecosystem processes (Sherry and others 2007; Rosenzweig

and others 2008), so it is critically important to detect

directional factors limiting NPP in the context of natural

background in climate variability.

Chinese forests contain perhaps the widest range of

vegetation types in the world (Editorial Committee for

Vegetation of China 1980) and have a significant influence

on regional and global carbon budgets (Fang and others

1998; Liu and others 2000). In China, there is an emerging
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body of literature that demonstrates the coupled relation-

ships between NPP and the climate system (Gao and others

2000; Fang and others 2001, 2002, 2005; Ni and others

2001; Ni 2004; Piao and others 2003, 2008, 2009; Hu and

others 2007; Li and others 2007). Based on the NPP data

for 690 forest stands from 17 forest types of China, Ni and

others (2001) showed that the NPP of Chinese forests is

highly correlated with annual mean temperature and rain-

fall, and annual potential evapotranspiration. Fang and

others (2001) used an annual mean NDVI to quantify

temporal NPP variability relative to precipitation variation

for five biome groups (forest, grassland, desert, alpine

vegetation, and cropland) across China. Recently, Piao and

others (2009) used biomass and soil carbon inventories

extrapolated by satellite greenness measurements, ecosys-

tem models and atmospheric inversions, to analyze the

current terrestrial carbon balance of China and its driving

mechanisms during the 1980s and 1990s. Climate change

has been proven to have significant effects on NPP of

temperate grassland in the Inner Mongolian Plateau

through changes in precipitation pattern, vegetation growth

potential, and species diversity (Hu and others 2007). A

large part of scientific interests on NPP-Climate relation-

ships in China has focused on describing the influences of

yearly climate variables, whilst potential impact of sea-

sonal climate on NPP variability of terrestrial ecosystems

are still rare and poorly studied (Piao and others 2003,

2008).

The Ecosystem Model-Data Intercomparison (EMDI)

project was established to develop a consistent global NPP

data set with which to compare and improve models and

data collection methods, and improve our understanding of

environmental controls of carbon allocation (Olson and

others 2001). The EMDI project compiled NPP data for

over 130 intensive sites, for 2000–2500 extensive sites, and

2000–3000 cells, representing the largest global NPP data

set collected to date. The data assembled for EMDI likely

have various ecological applications and are attracting the

interests of global change modelers, ecologists, and remote

sensing scientists worldwide (Cramer and others 1999; Ni

and others 2001; Schuur 2003; Del Grosso and others

2008). Here we use NPP data for 221 forest sites and their

related environmental variables for eastern China from the

EMDI project, to quantify the response patterns of forest

NPP in eastern China to seasonal climate variables.

Materials and Methods

Study Region

We defined eastern China as the humid to semi-humid zone

of China east of a line from Daxing’anling Mountains to

Taihang Mountain to Wushan Mountain to Xuefeng

Mountain, characterized by the broad plains and hills

(Fig. 1). This region belongs to the third and lowest terrace

in China, with average elevation less than 1000 m, which is

in contrast to the increasing topographies of high plateaus

to the west (Zhou and Zheng 2008). The climate in the

southern domain of eastern China was warm humid, the

northern domain was cold sub-humid, and the intermediate

domain was warm sub-humid. Overall, the climate was

Fig. 1 Location and forest net

primary productivity (NPP)

class of 221 forest NPP sites in

the EMDI project for eastern

China
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dominated by the East Asian Monsoon with greater influ-

ence from mid-latitude weather systems to the north, with a

predominant northwest to southeast gradient in mean

temperature and total annual precipitation and a distinct

May-September rainy season (Tao and Chen 1987; Cheng

1993). A vegetation sequence is distributed along the

North-South transect of apparent latitudinal gradients of

climate in eastern China, including the cold temperature

coniferous forest, temperate mixed forest, warm temperate

deciduous broadleaf forest, subtropical evergreen conifer-

ous forest, evergreen broadleaf forest and tropical rain-

forest from the north to south.

NPP Data

We primarily used the compilation of NPP estimates for

221 forest sites of eastern China from the EMDI project.

Data points that were unrepresentative their general loca-

tion or otherwise difficult to represent by a generalized

NPP model were excluded from the EMDI review and

outlier analysis (Olson and others 2001). EMDI includes

both aboveground (ANPP) and total (TNPP) NPP data. We

performed analyses only on TNPP; although ANPP was

more reliably estimated, some data sets only report TNPP

and previous models (e.g., Lieth 1975; Schuur 2003) only

estimated TNPP. The dataset included the site name, lati-

tude, longitude, elevation, estimated TNPP and the envi-

ronmental driving variables for each record. Data on

biomass and estimated NPP of major forest types of eastern

China were compiled based on the inventories of the For-

estry Ministry of China between 1989 and 1993. Additional

data were obtained from published forest reports, as well as

from more than 60 Chinese journals and some unpublished

literature up to 1994 (Luo 1996; Ni and others 2001). The

data covered six major forest biomes, and 17 forest types in

China, ranging across a substantial geographical area, from

sub-boreal Larix forests in northeast China (Heilongjiang

Province: approx. 53�N, 122�E) to tropical rain forests of

Hainan Island (approx. 18�N, 108�E) in southern China.

The climate data for the NPP forest sites in eastern

China were extracted by Wolfgang Cramer and Stephen

Sitch at the Potsdam Institute for Climate Impact Research

(PIK), which used a combination of the long-term averages

(1961–1990) from the PIK database (Leemans and Cramer

1991) based on the University of East Anglia climate

database (New and others 1999, 2000). The Climate vari-

ables included mean temperature (TEM), total precipitation

(PRE), and sunshine duration time (SUN) of four different

seasons: spring (SPR: March to May), summer (SUM: June

to August), autumn (AUT: September to November) and

winter (WIN: December to February), averaged from

monthly climate data.

Normalized difference vegetation index (NDVI),

derived from red and infrared relative radiance data, is a

useful tool for assessing extent and condition of vegetation

(Kumar and Monteith 1982, Sellers and others 1996). It is

calculated as (NIR - R)/ (NIR ? R), where NIR is rela-

tive radiance in near infrared wavelengths and R is relative

radiance in red wavelengths. Satellite-sensor-borne instru-

ments, such as the Advanced Very High Resolution Radi-

ometer (AVHRR), yield global-scale NDVI time series for

estimating interannual changes in vegetation activity

(Justice and others 1985, Malingreau 1986, Goward and

others 1994, Myneni and others 1997). NDVI has been

proven to have strong correlation with terrestrial NPP and

is frequently used to predict NPP (Diallo and others 1991;

Fang and others 2001). Therefore, we included seasonal

measure of NDVI (spring, summer, autumn and winter) for

the NPP sites based on available data for 1986, 1987, and

1990, compiled by the University of New Hampshire

(James and Kalluri 1994).

Statistical Analyses

We performed ordinary least squares (OLS) multiple

regression to fit four categories of NPP models (hereafter

referred as OLS models), i.e. a physical model (NPP

explained by latitude, longitude and elevation), a climate

model (NPP explained by seasonal TEM, PRE and SUN)

and a NDVI model (NPP explained by seasonal NDVI),

and a global model (NPP explained by all factors). For

each of the model categories, we used the backward

selection of variables combined with the Akaike Informa-

tion Criterion (AIC). In this approach, the model began

with all the variables. Remove one variable based on some

information criterion (typically the smallest AIC value).

Continue this process until all remaining variables are

above some pre-established AIC threshold (Burnham and

Anderson 2002). We then compared the stepwise-selected

models from each category and considered the model

which minimizes AIC to be the most appropriate model

(Akaike 1973). Although multiple regressions are com-

monly used for testing effects of many explanatory vari-

ables on a targeted response, the multicollinearity of

confounded explanatory variables might threaten their

statistical and inferential interpretation (Graham 2003). We

assessed the effect of multicollinearity on parameter esti-

mation by the mean of variance inflation factor (VIF) cri-

terion (Graham 2003; Etien and others 2009), which was

independently of the number of explanatory variables.

Spatial autocorrelation (SAC) in data, i.e. the higher

similarity of closer samples, is a common phenomenon in

ecology (Lennon 2000). Many studies have incorporated

SAC into statistical models (termed spatial models) (Dor-

mann 2007; Hawkins and others 2007; Kissling and Carl
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2008; Bini and others 2009). Here, we compared the effects

of the OLS models and simultaneous autoregressive (SAR)

multiple regression NPP models (taking SAC into account,

hereafter referred as SAR models) on the estimation of

standardized coefficients, and the automated analysis pro-

cedure is performed by the statistical library developed for

SAM (Rangel and others 2010). To quantify the effect of

correcting for SAC on model coefficients, I used the fol-

lowing formula to transform spatial and non-spatial model

coefficients (bs and bns, respectively) into a relative SAC

effect (rSACe) (Dormann 2007; Bini and others 2009):

rSACe ¼ jbns � bnj=Maximumðbns � bnÞ. This formula

allows for a direct comparison of coefficients from OLS

and SAR models: the larger rSACe is, the greater is the

difference between coefficient estimates from OLS and

SAR models.

Results

Forest NPP in Eastern China

The elevation of the forest study sites ranges from 30 m of

temperate EBL(EBL: evergreen broad-leaf) forest in

Jiangsu province, to 1966 m of temperate EBL in Hubei

province, and the mean elevation of forest NPP sites is

472 m (Table 1). The lowest and highest NPP occur in the

boreal ENL (ENL: evergreen needle-leaf) forest (260

c/m2/y, 410 m) of the northernmost sites in Heilongjiang

province and temperate EBL forest (1580 c/m2/y, 600 m)

in Jiangxi province of southern China, respectively. In

order of biome, NPP of tropical EBL (916 c/m2/y) and

temperate EBL (930 c/m2/y) forests are significant greater

than temperate DBL (DBL: deciduous broad-leaf) forests

(622 c/m2/y), and the lowest value of NPP was found in

needle-leaf forests, such as temperate ENL forests(422

c/m2/y), boreal DNL(DNL: deciduous needle-leaf) forests

(419 c/m2/y) and boreal ENL forests (373 c/m2/y). From

the spatial patterns of NPP class in eastern China (Fig. 1),

one noticeable feature is that NPP in the south domain is

significantly greater than the north domain, and the highest

NPP sites are all geographically distributed in the southern

domain of eastern China, especially for the temperate EBL

forest in Fujian province where taking possession of more

than half of the top ten NPP sites (1390–1580 c/m2/y) in

eastern China.

Non-Spatial OLS Models

We compared four categories of statistical models to select

the most appropriate fit to the data (Table 2). In the

physical model, the lowest AIC value was obtained while

combining latitude (negative, hereafter referred to as -)

and longitude (positive, hereafter referred to as ?), and

elevation was not selected by the AIC test. The climatic

model indicated that NPP was represented most appropri-

ately by winter precipitation (?), as well as the tempera-

tures in spring (?), summer (-) and winter (-) seasons.

The climatic model (R2 = 0.438, AIC = 2430.6) was

slightly stronger compared with the physical model

(R2 = 0.407, AIC = 2438.4). Although NDVI model

highlighted the effects of NDVI in spring (?), autumn (-)

and winter (-) on NPP, statistically significant association

was only found between winter NDVI and NPP. Further-

more, NDVI model was also the weakest model with the

lowest explainable variability of NPP (R2 = 0.365,

AIC = 2455.7). The Global model, taking into account of

all factors, indicated the most influential explanatory

variables for NPP were latitude (-), longitude (?), sun-

shine duration time in winter (-), and temperatures in

spring (?) and autumn (-). The Global model had more

support than the best model from any single category

(R2 = 0.468, AIC = 2420.4).

The Detection of Multicollinearity for OLS Models

The mean variance inflation factor (VIF) of various pre-

dictors in physical, climatic, NDVI and global models was

2.86, 8.75, 3.4 and 7.48 respectively, which was far below

Table 1 Descriptive statistics (mean, standard deviation and range)

of total net primary productivity (TNPP) physical and environmental

driving variables for the 221 forest sites in eastern China

Mean SD Range Time span

TNPP 770 320 260 to 1580 1989–1994

Latitude 34.19 9.54 18.7 to 52.63 –

Longitude 119.17 6.41 108.78 to 134 –

Elevation 472 315 30 to 1966 –

NDVI_SPR 0.35 0.08 0.16 to 0.54 1986, 1987, 1990

NDVI_SUM 0.60 0.08 0.38 to 0.75 1986, 1987, 1990

NDVI_AUT 0.48 0.08 0.27 to 0.62 1986, 1987, 1990

NDVI_WIN 0.28 0.15 0.04 to 0.54 1986, 1987, 1990

PRE_SPR 385 262 35 to 819 1960–1990

PRE_SUM 527 163 259 to 1465 1960–1990

PRE_AUT 193 89 60 to 751 1960–1990

PRE_WIN 114 83 4 to 264 1960–1990

SUN_SPR 112 54 44 to 203 1960–1990

SUN_SUM 120 21 71 to 175 1960–1990

SUN_AUT 144 32 85 to 212 1960–1990

SUN_WIN 135 54 55 to 220 1960–1990

TEM_SPR 10.10 7.04 -4.1 to 23.47 1960–1990

TEM_SUM 21.76 3.80 13.57 to 28.07 1960–1990

TEM_AUT 10.92 7.99 -5.5 to 24.03 1960–1990

TEM_WIN -3.48 12.61 -29.77 to 17.83 1960–1990
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the pathological value of 10 (Neter and others 1996;

Chatterjee and others 2000). This indicated that the overall

severity of multicollinearity in our dataset was minimal,

and the individual effects of explanatory variables on NPP

in those models were true synergistic relationships rather

than spurious correlations.

Spatial SAR Models

Irrespective of the moderate difference of coefficients for

various predictors, SAR models generated results generally

concordant with OLS models (Tables 2, 3). Furthermore,

the value of rSACe calculated from OLS and SAR models

was extremely small, ranging from 0.01 in global models to

0.03 in NDVI models. Therefore, spatial autocorrelation

(SAC) was not a serious issue in this dataset and should not

threaten analyses and subsequent inferential interpretation.

Consequently, the explanatory variables predicted by OLS

models should have the perceived importance. We also

observed that AIC (from 3047.5 to 3039.9) of SAR models

actually was higher than those (from 2420.4 to 2438.4) of

OLS models (Tables 2, 3). This was not surprising,

because SAR models incorporated the spatial autocorrela-

tion in the residual covariance in comparison to OLS

models.

Discussions

The physical and global models indicated that forest NPP

in eastern China had significant negative correlation with

latitude, and positive relationship with longitude. We found

empirical support for the common hypothesis that forest

NPP in China decreases from south to north in relation to

the decreasing temperature and precipitation, and increases

from west to east in relation to the moisture gradient. Some

previous studies assumed that elevation might lead to

uncertainties in the relationship between climate and NPP

(Ni and others 2001). However, based on our physical and

global models we found no evidence that NPP in eastern

China was associated with elevation.

Our best climatic models indicated that energy input in

winter was important in explaining forest NPP in eastern

China. The most important climatic factors were the neg-

ative influence of winter temperature and sunshine duration

time, as indicated by climatic and global models, respec-

tively. Our result substantiate the hypothesis that anoma-

lously warm winter climate can result in a loss of frost

resistance during a prolonged thaw period, at a time that

the tree is normally dormant and fully frost hardy (Auclair

and others 1996). This thaw period increases the proba-

bility that a subsequent severe freezing event will damage

the forests (Yin and others 1994), which will deplete the

pool of the stored carbohydrates and reduce a forest’s

potential for future growth. One extreme example is Chi-

na’s snow disaster in 2008, which broke 57-year records

for freezing days and minimum temperatures and had

severe negative impacts on natural and agricultural eco-

systems, and resulted in serious human and economic

losses (Wang and other 2008; Hui 2009). Winter temper-

atures also constrain tree growth in different temperate

forest ecosystems in eastern North American (Pederson and

others 2004). The importance of winter climate on forest

NPP is further emphasized by the strong positive effect of

Table 2 Most supported ordinary least-squares regression models for four categories of effects hypothesized to affect forest net primary

productivity (NPP) based on 221 forests sites (1989–1994) in eastern China

Model R2 Adjusted R2a P value AICb

Physical model

Y ¼ �29:24� Lat� þ 15:79� Long� � 111:21 0.407 0.402 \0.001 2438.4

Climatic model

Y ¼2:29� PRE�WIN þ 103:29� TEM�SPR � 72:82� TEM�SUM

� 35:21� TEM�WIN þ 928:48

0.438 0.428 \0.001 2430.6

NDVI model

Y ¼ 718:2� NDVISPR � 417:4� NDVISUM � 854:6� NDVI�WIN þ 533:6 0.365 0.356 \0.001 2455.7

Global model

Y ¼� 37:1� Lat� þ 26:09� Long� � 2:58� SUN�WIN

þ 89:13� TEM�SPR � 97:36� TEM�AUT � 557:65

0.468 0.456 \0.001 2420.4

Note In multiple linear regression, data are fit to a linear model that predicts values of a response (Y) as the weighted sum of explanatory variables

(Xi) and random error (e): Y ¼ b0 þ b1X1 þ b2X2 þ � � � þ biXi þ e, where bi is regression coefficient

* Significant level of \0.01 in Student’s t test between NPP and its driving variables
a Adjusted R2: adjusted to account for the number of terms in the model
b AIC: Akaike information criterion for model comparison
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winter precipitation in the climatic models, and this can be

also related to a direct physiological influence. Forest

growth benefits from the previous winter’s precipitation, as

the latter works to enrich soil moisture storage, which is

crucial for the coming year tree growth. Precipitation

throughout the dormant season might likewise control

water availability in early spring (Oberhuber and others

1998).

Climatic models also indicated a positive relationship of

forest NPP with spring temperature. In conditions where

temperature strongly limits the radial growth of trees,

especially in northern part of eastern China, the tempera-

ture must be higher than some threshold for the thawing of

the upper soil layer so that radial growth can commence

(Goldstein and others 1985; Vaganov and others 1999).

High spring temperatures also lead to the breaking of

dormancy and the resumption of physiological activity in

the tree, and thus increase the duration of the current

growing season (Lebourgeois and others 2005). Further-

more, a warm spring will speed the snowmelt and have a

subsequent positive effect on soil moisture in early forest

growth season.

We also found support for negative effects of summer

(climatic model) and autumn (global model) temperatures.

Trees divide and enlarge cells most actively during the

warmest period of the growing season, and the climate

conditions during this period determine the amount of

photosynthates available for radial growth (Raftoyannis

and Radoglou 2002; Deslauriers and others 2003). High

temperatures and strong solar radiation in summer and

autumn seasons can intensify evaporation rates thus

decreasing moisture content (Körner 1998; Granier and

others 2000). A water deficit results in a higher loss of

assimilated carbon as a source of energy thus should be

detrimental to tree growth (Aranda and others 2000;

Lebourgeois and others 2005). In contrast, a cool, moist

summer and autumn can result in rapid tree growth because

evapotranspiration losses are smaller and water stress

reduced (Kienast and others 1987). A similar trend was

found by Clark and others (2003), who observed daily

minimum temperatures were negatively related to large

interyear variations in forest-wide aboveground biomass

increment of tropical forests. There is a large and well-

established body of literature describing the temperature

inducing drought stress is one possible explanation for a

late-twentieth century decrease in the positive relationship

of temperature and forest growth at high northern latitudes

across the Northern Hemisphere (Briffa and others 1998;

Barber and others 2000; Büntgen and others 2008;

D’Arrigo 2008). Based on weather station data in Asia-

Pacific Network (APN) countries examined for the

1955–2007 period, Choi and others (2009) have confirmed

the fact that summer warm nights and days are changing

more rapidly per unit change in mean temperatures than the

corresponding frequencies for cool nights and days. Under

recent climate warming (Kerr 2007), temperature-induced

drought stress may become the dominant factor limiting the

future capacity of forests in eastern China to sequester

carbon.

NDVI is a useful tool for assessing extent and condition

of vegetation (Tucker 1979; Myneni and others 1995) and

NPP has been frequently predicted by NDVI. For example,

Fang and others (2001) used an annual mean NDVI dataset

over China to quantify temporal NPP variability relative to

precipitation variation for five biome groups across China.

Nemani and others (2003) used a biome-specific produc-

tion efficiency model that combined photosynthetically

active radiation (FPAR) and leaf area index (LAI) derived

Table 3 Most supported spatial autocorrelation regression models for four categories of effects hypothesized to affect forest net primary

productivity (NPP) based on 221 forest sites (1989–1994) in eastern China

Model R2 Adjusted R2a P value AICb

Physical model

Y ¼ �27:3� Lat� þ 12:19� Long� � 129:57 0.408 0.395 \0.001 3035.9

Climatic model

Y ¼1:98� PRE�WIN þ 87:47� TEM�SPR � 63:44� TEM�SUM

� 25:78� TEM�WIN þ 920:69

0.433 0.415 \0.001 3039.6

NDVI model

Y ¼ 812:11� NDVISPR � 593:84� NDVISUM � 389:24� NDVI�WIN þ 611:1 0.333 0.314 \0.001 3047.5

Global model

Y ¼� 34:21� Lat� þ 23:27� Long� � 2:32� SUN�WIN

þ 77:61� TEM�SPR � 83:48� TEM�AUT � 419:3

0.466 0.448 \0.001 3039.9

* Significant level of \ 0.01 in Student’s t test between NPP and its driving variables
a Adjusted R2: adjusted to account for the number of terms in the model
b AIC: Akaike information criterion for model comparison
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from NDVI with climate data to estimate the annual esti-

mated NPP across the world. We found a positive rela-

tionship between NPP and NDVI in spring, but a negative

relationship in summer and winter. This result is generally

concordant with the response patterns of NPP to tempera-

ture. The advancement of forest growing season primarily

led by an elevated spring temperature is suggestive of an

increase in forest growth associated with a lengthening of

the active growing season (Keeling and others 1996;

Myneni and others 1997; Nemani and others 2003). This

might be employed as a potential interpretation of positive

link between spring NDVI and NPP. Based on a time series

NDVI and corresponding ground-based information in

China, Piao and others (2003) also emphasized that the

regions with the largest increase in spring NPP appeared

mainly in eastern China. The detrimental impacts on forest

growth of high temperature in winter (loss of frost resis-

tance) and summer (drought stress) should be the plausible

explanations for negative relationships of NPP with NDVI

in winter and summer. In sum, the relationships between

forest NPP and seasonal NDVI are complicated, and the

direction of the effects can change among the different

seasons. The assumption of a uniform positive relationship

between NDVI and NPP models, based on annual data,

might lead to biased results if seasonal effects are not

adequately considered.

Conclusion

Study of the responses of terrestrial net primary production

(NPP) to climate changes can help scientists understand

feedback between climate systems and terrestrial ecosys-

tems and be one of key focuses for global scientific com-

munity (Cramer and others 1999). We developed four

categories of NPP models (Physical, Climatic, NDVI and

Global) based factors hypothesized to affect NPP. We used

data for 221 sites in eastern China from the EMDI project

and successfully fit regression models for all model cate-

gories and identified strong predictors of NPP in eastern

China. Based on our most supported models that consid-

ered all categories of effects (global models), the best

predictors of NPP were latitude (-), longitude (?), winter

sunshine duration (-), spring temperature (?), and autumn

temperature (-). In addition the important seasonal effects

on NPP included summer and autumn drought stress (as

indicated by temperature) and spring NDVI (?), summer

NDVI (-) and winter NDVI (-) seasons. Most studies of

NPP have focused on annual climate data (Fang and others

2001; Knapp and Smith 2001; Nemani and others 2003;

Schuur 2003). We suggest more investigation of seasonal

climate effects on NPP are needed to understand the rela-

tionship between NPP and climate and to develop better

climate-vegetation models (Hicke and others 2002; Piao

and others 2003; Yu and others 2008).
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